THE CONTENTS OF THIS SECTION ARE THE HIGHEST QUALITY AVAILABLE

INITIAL 9 DATE 9/27/02

PAGE NUMBERING SEQUENCE IS INCONSISTENT

Appendix A

Stress Induced in Geomembrane and Geosynthetic Clay Liner

STRESS INDUCED IN GEOMEMBRANE AND GCL

OBJECTIVE: Estimate the stress induced in the geomembrane and geocomposite clay (GCL) liner due to the self and overlying material weight and subgrade settlement

METHOD: The stress induced in the geomembrane and GCL are due a combination of the weight of the material and the strain applied to the material due to settlement of the underlying layers.

ASSUMPTIONS: Use GSE 60 mil textured HDPE geomembrane and Cetco GCL

CALCULATION:

<u>Self and overlying weight</u>: Based on EDF-ER-268, the minimum interface shear strength for the liner system is 29.3°. The liner system slope angle is 3H:1V (18.4°); therefore, since the interface friction angle is greater than the slope angle, there is no net stress on the liner system.

Settlement:

Minimum horizontal slope length: Minimum vertical slope length: Initial three dimensional slope length (I _o):	85 ft 28 ft 89.49 ft	See page 2, Drawing C-302 See page 2, Drawing C-302
Maximum vertical displacement Final vertical slope length: Final three dimensional length (I _t):	1.2 ft 29.2 ft 89.88 ft	Based on results of EDF-ER-266

Liner strain (($I_f - I_o$)/ I_o): 0.004258 0.425783 %

HDPE Liner Stress (S = EV)

HDPE Tensile Strength at Yield: 130 lb/in See specification sheet

HDPE liner thickness: 0.060 in

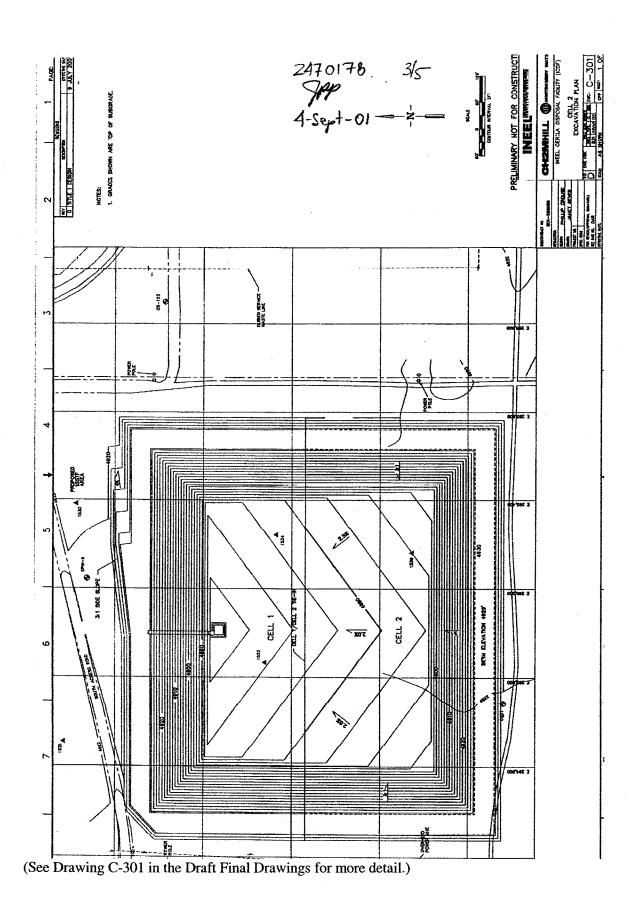
HDPE liner elastic modulus: 2,166.667 psi

Liner stress (\$): 9.225299 psi

Safety Factor (Allowable elastic stress/applied stress): 234.86

CONCLUSIONS: Based on the calculations, the subgrade settlement will have no detrimental effect on the HDPE liner system.

GCL Liner Stress


Elastic properties for GCL material are not normally determined. A standard physical property specified is grab elongation. Therefore the estimated strain will be compared to the GCL grab elongation.

Estimated strain from above calculation: 0.425783 %

GCL grab elongation: 50 % per company representative

Safety Factor (Allowable strain/applied strain) 117.43

CONCLUSIONS: Based on the calculations, the settlement of the subgrade will have no detrimental effect on the GCL liner system.

A-4

Designing for Separation

247017 Spp 4.Syt-

Solution: (a) Using a maximum strain of 33%, the value of $f(\epsilon)$ required grab tensile strength is as follows:

$$T_{\text{read}} = p'(d_r)^2(0.52)$$

$$= p'(0.33 d_r)^2(0.52)$$

$$= 0.057 p'd_r^2$$

$$= 0.057(100)(2.0)^2$$

$$= 22.6 \text{ ib.}$$

(b) The global factor of safety on a 125-lb. ultimate grab tensile geotextile with partial factors of safety of 2.5 is as follows:

$$FS = \frac{T_{\text{atom}}}{T_{\text{regt}}}$$
$$= \frac{125/2.5}{22.6}$$
$$= 2.2, \text{ which is acceptable.}$$

2.5.4 Puncture Resistance

Although not only related to the separation function, the geotextile during its placement must survive the installation process. Indeed, fabric survivability is critical in all types of applications; without it, the best of designs are futile (recall Section 2.2.5.1). In this regard, sharp stones, tree stumps, roots, miscellaneous debris, and other things on the ground beneath the geotextile could puncture through the geotextile after stone base and traffic loads are imposed above it. The design method suggested for this situation is shown schematically in Figure 2.29. For these conditions, the vertical force exerted on the geotextile (which is gradually tightening around the protruding object) is as follows:

$$F_{\rm max} = p'd_{\rm s}^2 S_1 S_2 S_2 \tag{2.30}$$

where F_{max} = the required vertical force to be resisted,

p' = the pressure exerted on the geotextile (approximately 100% of tire inflation pressure at the ground surface for small stone thicknesses).

d. = the average diameter of the puncturing aggregate or sharp object,

 $S_1 = protrusion factor = h_i/d_{e_i}$

h, = protrusion height ≤ d.,

S₁ = scale factor to adjust ASTM D4833 test value using \$/16-in.-diameter. puncture probe to actual puncturing object = 0.31/d_e.

 S_1 = shape factor to adjust flat puncture probe of ASTM D4833 to actual shape of puncturing object = $1 - A_i/A_i$ (values of A_i/A_i to be used

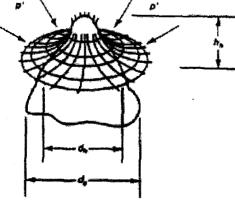


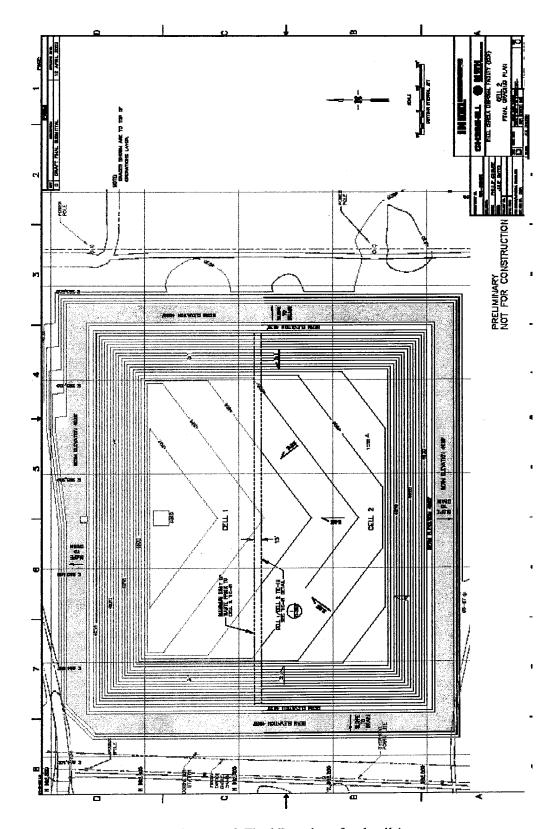
Figure 2.28 Visualisation of a stone puncturing a geotestile as pressure is applied from above.

> range from 0.8 for Ottawa sand 0.7 for run-of-bank gravel 0.4 crushed rock, and 0.3 for shot rock),

A, = projected area of particle, and

A, = area of smallest circumscribed circle.

What is the factor of safety against puncture of a geotextile from a 2.0-in. stone by a loaded truck with tire inflation pressure of 80 lb./in. traveling on the surface of the stone base? The geotextile has an ultimate puncture strength of 45 lb. according to ASTM D4833.


Solution: Using the full stress on the geotextile of 80 lb./in.2 and factors of 0.33. 0.155, and 0.6 for S_1 , S_2 , and S_3 , respectively,

$$F_{\text{max}} = p'd_1^2 S_1 S_2 S_3$$

= 80 × (2.0)²(0.33)(0.155)(0.6)
= 9.82 lb.

Assuming that the cumulative partial factor of safety is 2.0, the global factor of safety is as follows:

$$FS = \frac{F_{\text{start}}}{F_{\text{max}}}$$

= $\frac{45/2.0}{9.82}$

= 2.3, which is acceptable.

(See Drawing C-302 of the ICDF Draft Final Drawings for details)

A-7

431.02
09/19/2000
Day OS

ENGINEERING DESIGN FILE

Functional	File No.	NA.	
EDF No.	ER-268		

1.	Project File No.:	NA	2.	Project/Task:	ICDF		
				· ·	COLUMN TO SERVICE STREET, ST.	**************************************	
2.0		7.00 E. C.	THAT I'VE BOOK				
ี 2	Subtask: Slope S	tability Assessmen	ıts .				Programme and the second
	TANTIONING CAPPED	AMERICAN & PROPERTY OF THE PARTY OF					

4. Title: Slope Stability Assessments (Title I)

5. Summary:

This report documents the slope stability evaluations that were performed to aid in the design of the liner system for the ICDF landfill and ICDF evaporation pond. These stability evaluations included veneer stability, global stability, and stability after excavation. Veneer stability involves evaluation of the potential for sliding of the drainage layer on the liner system before refuse is placed. Global stability involves evaluation of the potential for sliding during operation of the landfill and of the stability of the final landfill configuration with the cover in place. Stability after excavation involves evaluation of stability, immediately after excavation of the landfill and before placement of the lining system.

- Distribution (complete package):
 - M. Doornbos, MS 3930
 - D. Vernon, MS 3930
 - T. Borschel, MS 3930

Distribution (summary package only):

7. Review (R) and Approval (A) Signatures:

(Minimum reviews and approvals are listed. Additional reviews/approvals may be added.)

	R/A	Typed Name/Organization	Signature	Date
Performer	R	King Sampaco/ CH2M HILL		07/09/01
Independent Reviewer	R	Don Anderson/ CH2M HILL		07/09/01
Requestor	A	Mike Reimbold/ CH2M HILL		07/09/01
Approver	A	Jay Dehner/CH2M HILL		07/09/01

For veneer stability of the lining system, strength values based on test data conducted under low normal stresses were considered appropriate. For this project, low normal stress—in the context of veneer stability—was limited to stress levels less than 600 pounds per square foot (psf), or an equivalent of up to about 5 ft of soil. Interface shear strength data applicable to this stress level were then modeled using linear regression. In the regression analysis, the interface shear strength was represented by an effective friction angle by forcing the cohesion intercept to zero. The idea of using the effective friction angle to represent the shear strength of the interface at low normal stress is to maintain the magnitude of the shear strength while eliminating the dependency on the cohesion intercept in the strength parameter determination. For low effective confining pressures, this approach allows the shear strength to approach zero as confinement goes to zero.

Appendix A contains the database of interface shear strength tests that were analyzed. Material interfaces in which test data has been analyzed under this task include soil/geocomposite, textured HDPE/geocomposite, textured HDPE/GCL, and GCL/geocomposite interface. Based on the measured and reported interface strength data, peak and residual strengths of lining material interfaces were evaluated. For veneer stability analysis, however, residual strengths are considered to be appropriate (Stark and Poeppel 1994). For the soil/geocomposite interface shear strength, test data that indicate a mixture of sand and gravel (with and without silt) for the soil component, consistent with the description of the on-site native material, were evaluated in the analyses. Shear strength data for CCL/textured HDPE interface were not analyzed due to the inadequate amount of data that is available. In the absence of adequate data, test results from the Cedar Hills Regional Landfill (CHRL) project (CH2M HILL 1998a) were used in the analyses. These results indicate an interface friction angle of about 25 degrees and a cohesion of zero for the CCL/HDPE interface. Additional site-specific testing is recommended to confirm this value, as discussed in "Evaluation of Geotechnical Investigations and Calculations Required to Complete Design and Construction" (DOE-ID 2001b). Results of site-specific interface shear testing will be reported in the 90% Remedial Design/Remedial Action (RD/RA) design submittal. Analyses presented herein will be revised if lower strength values are obtained from the site-specific testing.

Based on the above evaluations, the critical interface for the veneer stability analysis appears to be the non-woven GCL/non-woven geocomposite interface. A residual friction angle of 19 degrees was developed from the existing data for low normal stress for this interface. Most recent test results provided by Montgomery Watson (1999) using exactly the same materials proposed for this project, except that the woven side of GCL was used, indicate an effective residual interface friction angle of 24 degrees. In this project, it is proposed that a non-woven side of GCL will be placed in contact with the geocomposite, which, as a result, could yield a higher residual friction angle than the 24 degrees that was reported. For this reason, and the fact that actual test results are available for the proposed lining material, it was decided to use a residual friction angle of 24 degrees for the GCL/geocomposite interface. This value matches the residual interface friction angle for the HDPE/geocomposite interface as the most critical interface for veneer stability. It is recommended, however, that actual interface shear strength tests be conducted for the non-woven GCL/non-woven geocomposite interface to confirm this value. Results of site-specific interface shear testing will be reported in the 90% RD/RA design submittal. Analyses presented herein will be revised if lower strength values are obtained from the site-specific testing.

The analysis for self-weight (Case 1) involved an evaluation of veneer stability under the load of the 3-ft-thick operations layer only. For equipment loads (Case 2), an equivalent equipment weight of 4,400 pounds per lineal foot of lining system such as that caused by a D6H Caterpillar dozer was assumed during placement of the drainage layer over the HDPE geomembrane. It was further assumed for this loading case that the seepage height would be zero. For the seepage case (Case 3), the maximum allowable head over the side slope lining system is 6 in. for stability purposes. FSs corresponding to seepage heights of 3 in. and 6 in. were evaluated. A maximum slope height of 40 ft was used in running the SLOPBASE program.

431.02 09/19/2000 Rev. 08

ENGINEERING DESIGN FILE

Functional	File No.	NA
EDF No.	EDF-EF	t-266

1. Project F	ile No.	: <u>NA</u> 2. Pro	ject/Task: ICDF	
3. Subtask:	Subsu	urface Consolidation Calculation		and amount site areas
4. Title: Su	henrfor	e Consolidation Calculation		
Summary The purportion foundation	r: ose of t n soils f conso	this calculation is to determine the resulting from the load of the wa blidation is used to determine the	ste material and cover. The	maximum
M. Doorn D. Verno T. Borsch Distributi 7. Review (nbos, M n, MS nel, MS on (sur R) and	3930 3930 mmary package only): Approval (A) Signatures:		
(Minimur	n revie R/A	ws and approvals are listed. Add Typed Name/Organization	itional reviews/approvals ma Signature	y be added.) Date
Performer	R	Donald Montgomery/ Montgomery Watson	Digitality	
Independent Reviewer	R	Phillip Crouse/Montgomery Watson		
Requestor	A			
Approver	A	Jay Dehner/CH2M HILL		

6. RESULTS AND CONCLUSIONS

6.1 Maximum Differential Settlement

The maximum total settlement at the center of the landfill is conservatively estimated to be 1.2 ft. Differential settlement is a function of the maximum total settlement and will be less than the total settlement; however, it is difficult to estimate. So, as a worst case, the maximum differential settlement is assumed to be equal to the maximum total settlement of 1.2 ft.

6.2 Stress and Strain in Liner Components

As the bottom of the liner consolidates, it will distort creating strain in each of the liner components. Assuming all the settlement occurs near the center of the landfill and no settlement occurs on the ends, the maximum differential settlement will be 1.2 ft as described previously. The floor of the landfill in its shortest direction is approximately 528 ft. (EDF 265 – Air Space Volume Calculation. The resulting strain is calculated below:

$$\varepsilon = \frac{L_f - L_I}{L_I}$$

Δ

Where,

 $\varepsilon = Strain$

L_f = Final length

L_I = The length on which the distortion acts

 θ = Angle of rotation

 Δ = Distortion

Using half of the width of the landfill, the maximum amount of strain is 0.001%. The calculation is presented below:

$$L_1 = \frac{528 \, ft}{2} = 264 \, ft$$

$$\theta = Sin^{-1} \left(\frac{1.2ft}{264ft} \right) = 0.26$$

$$L_f = 264 \frac{264 \, ft}{\cos(0.39)} = 264.003$$

$$\varepsilon = \frac{264.004 ft - 264 ft}{264 ft} = \frac{0.003 ft}{264 ft} \times 100 = 0.001\%$$

HyperFrictionFlex Textured HyperFlex HDPE Geomembrane

GSE HyperFrictionFlex is a premium grade, high density polyethylene (HDPE) geomembrane produced from a specially formulated, virgin polyethylene resin, and textured using GSE's patented FrictionFlex* process. The polyethylene resin is designed specifically for flexible geomembrane applications. HyperFlex has outstanding resistance to UV radiation and stress cracking and is therefore highly suited for exposed applications. The FrictionFlex process is the only manufacturing method that provides a textured material without significant reduction of any of the physical properties of the smooth surfaced membrane. No other textured membrane provides an equivalent combination of enhanced slope stability and resistance to containment failure if settlement of the lined structure occurs.

			The state of the s	WYTOTA EAST ON A CONTROL TO CONTR	
TESTED PROPERTY	TEST METHOD		MIN	IMUM VAI	LUES
Thickness, mils (mm)	ASTM D 751/1593/5199	36 (0.90)	54(1.35)	72 (1.80)	90 (2.25)
Density, p/cm ³	ASTM D 792/1505	0.94	0.94	0.94	0.94
Tensile Properties (each direction)	ASTM D 638, Type IV				
Strength at Break, (b/in-width (N/mm)	Dumbell, 2 ipm	162 (28)	243 (43)	324 (57)	405 (71)
Strength at Yield, lb/in-width (N/mm)		86 (15)	130 (23)	173 (30)	216 (38)
Elongation at Break, %	G.L. = 2.5 in (64 mm)	500	560	560	\$60
Elongation at Yield, %	GL. = 1.3 in (33 mm)	13	13	13	13
Tear Resistance, fb (N)	ASTM D 1004	30 (133)	45 (200)	60 (267)	75 (334)
Puncture Resistance, lb (N)	FTMS 101, Method 2065	52 (231)	80 (35G)	105 (467)	130 (579)
Carbon Black Content, %	ASTM D 1603	2.0	2.0	2.0	2.0
Environmental Stress Crack Resistance, hr	ASTM D 1693, Cond. B	1500	1500	1500	1500
REFERENCE PROPERTY	TEST METHOD	NOMINAL VALUES			
Thickness, mils (mm)	ASTM D 751/1593/5199	40 (1.0)	60 (1.5)	80 (2.0)	100 (2.5)
Roll Length (approximate), ft (m)	The state of the s	665 (216)	470 (215)	350 (107)	280 (85)
Low Temperature Brittleness, *F (*Q	ASTM D 746, Cond. B	<-107 (<-77)	<-107 (<-77)	<-107 (<-77)	<-107 (<-77)
Oxidative Induction Time, minutes	ASTM D 3895, 200 °C	100	100	100	10
	Pure O ₂ , 1 atm				
Carbon Black Dispersion	ASTM D 3015	A1,A2,81	A1,A2,81	A1,A2,81	A1,A2,B1 -
Dimensional Stability (each direction), %	ASTM D 1204, 100 °C, 1 far	±2	±2	s 2	±2
Melt Flow Index, g/10 minutes	ASTM D 1238, Cond.190/2.16	\$1.0	≤1.0	0,1≥	\$1.0

GSE HyperFrictionFlex is available in ralls approximately 22.5 ft (6.9 m) and 24 ft (7.3 m) wide and weighing about 3,500 lb (1,588 kg). Other material thicknesses are available upon request. See the FrictionFlex Application Data Sheet for more information regarding the GSE FrictionFlex texturing process.

This information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this information. Check with GSE for current, standard minimum quality assurance procedures.

GSE Uning Technology, Inc. Corporate Headquarters 19183 Gundle Road Boesse, Texas 77073 USA 808-435-2008, 281-443-8564 FAX: 281-875-6810 GSE Lining Technology GmbH European Headquarters Buctehoder Straffe 112 Ba-21073 Hamburg Germany 49-40-7-67-420

FAX: 49-40-767-42-33

Sales/Installation Offices Australia Egypt Singapore United Kingdom

Represented by:

For environmental lining solutions...the world comes to GSE*
A Gondle/SLI Environmental, Inc. Company

DS 002 R03/04/98

^{**} Roll lengths correspond to the 24 ft [7.3 m] wide roll goods.

^{*} Centain trademarks of GSE Lining Technology, Inc. are registered in the United States and centain foreign countries. GSE is a registered trademark of GSE Lining Technology, Inc.

Appendix B Geotextile Puncture Resistance

Required Puncture Resistance of Geotextile

OBJECTIVE: Determine the puncture resistance of the cushion geotextile required to prevent puncturing of the geomembrane by gravel layer

METHOD: The cushion geotextile is intended to protect the geomembrane from punctures caused by the gravel layer above the geomembrane. The required puncture resistence for the cushion geotextile will be dictated by the largest particle diameter for the gravel layer under the force provided by the waste and cover system above. The required puncture resistance was solved for using the formula presented in "Designing with Geosynthetics" 3rd edition, Koerner, 1995, pg 165 (see page 5 of this appendix). The formula is given below.

$$F_{req} = p' * d_a^2 * S_1 * S_2 * S_3$$

F_{req} - required vertical force to be resisted

p' - pressure exerted on geotextile

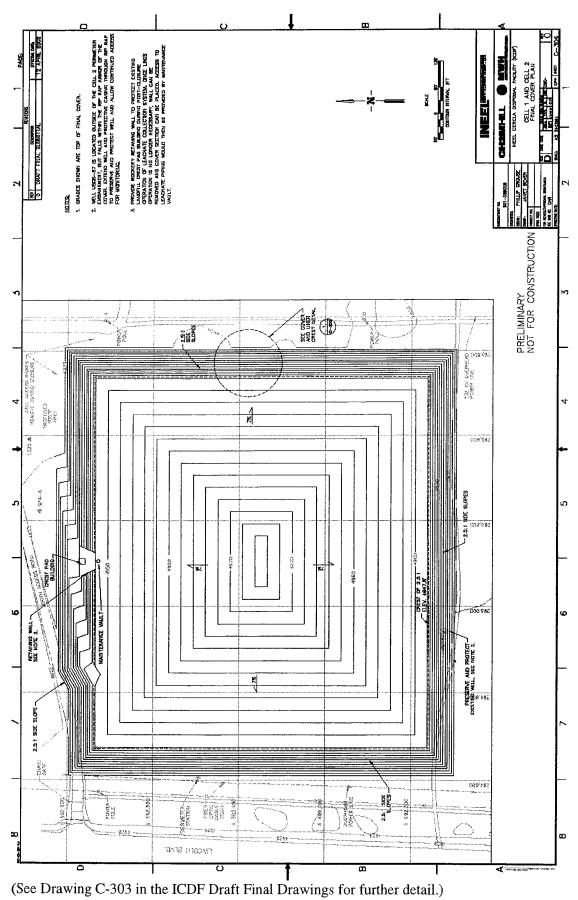
da - average diameter of puncturing aggregate

S₁ - protrusion factor, h_b/d_a

h_h - protrusion height <= d_a

 S_2 - scale factor to adjust ASTM D4833 test value using 5/16" diameter rod to the actual puncturing object = d_{probe}/d_a d_{probe} - probe diameter which is 5/16" for ASTM D4833

 S_3 - shape factor to adjust test puncture probe of ASTM D4833 to actual shape of puncturing object = 1 - A_p/A_c (values range from 0.8 for round sand, to 0.7 for run-of bank gravel, to 0.4 for crushed rock, to 0.3 for shot rock)


Ap - projected area of particle

Ac - area of smallest circumscribed circle

Calculation:

Maximum elevation of cover system:	4974 ft	See pg 2 drawing C-304
Minimum elevation of liner system:	4884 ft	See pg 3 drawing C-301
Maximum waste thickness:	90 ft	
Estimated waste density:	133.5 pcf	from EDF-ER-266
Average aggregate diameter (da):	0.67 in	$17mm = 0.67$ in for Gravel D_{50}
Probe diameter (d _{probe}):	0.3125 in	
A_p/A_c ratio:	0.4	conservate assumption, see pg. 5
Maximum anticipated pressure on the liner system (p'):	83 psi	
Protrusion factor (S ₁):	0.50	assume $h_h = 0.5 d_a$,
Scale factor (S ₂):	0.47	
Shape fator (S ₃):	0.6	
F _{req} :	5.2 lbs	

	Installation		Chemical	В	Bio	
	Damage	Creep	Degradation	ı D	egradation)	1
Typ Cushion Reduction Factors Ranges (Koerner,p. 149)	1.1 to 2.5	1.5 to 2.0	1.0 to 2.0	1.	.0 to 1.2	
Reduction Factors Used:	2		2	1.5		1.1
Total RF:	6.6					
Geotextile Specified Puncture Resistance:	135 lbs					
Fallow	20.5 lbs					
$FS = F_{allow}/F_{req}$	3.9					

landfilldesign.COm CHUM#1 (alcs Safety Factor Against Geomembrane Puncture - Elesign Calculator

(1) USUS MF3 = 0.5 > MONE LOWSELVE FLY (8) USUS H= 15 Mm = 0.50 Drum EM

Problem Statement

There are many circumstances where geomembranes are placed on or beneath soils containing relatively large-sized stones. For example, poorly prepared soil subgrade with stones protruding from the surface, and cases where crushed-stoned drainage layers are to be placed above the geomembranes. cases where crushed-stoned drainage layers are to be placed above the geon embrane.

In all of these situations, a nonwoven needle-punched geotextile can provide significant puncture protection to the geomembrane. The issue of determining the required mass per unit area cithe geotextile becomes (3) uses only RFZR

The method presented herein (Koerner, 1998) focuses on the protection of 1.5 mm thick HDPE and REMA geomembranes. The method uses the design by function approach.

$$FS = \frac{p_{\text{ottow}}}{p_{\text{out}}}$$

where:

FS

factor of safety against geomembrane puncture

actual pressure due to the landfill contents or surface impoundment

allowable pressure using different types of geotextiles and site specific conditions.

 p_{allow} is determined by the following equation:

$$P_{allow} = \left(50 + 0.00045 \frac{M}{H^2}\right) \left[\frac{1}{MF_s * MF_{PD} * MF_A}\right] \left[\frac{1}{RF_{CR} * RF_{CDD}}\right]$$

where:

Symbol	Name	Unit
Pallow	allowable pressure	kPa
M	geotextile mass per unit area	g/m2
H	height of the protrusion above the subgrade	m
MFs	modification factor for protrusion shape	-
MFPD	modification factor for packing density	$oxed{oxed}$
MFA	modification factor for arching in solids	-
RF _{CR}	reduction factor for long-term creep	E
RF _{CBD}	reduction factor for long-term chemical/biological degradation	

Appendix C Geomembrane Wind Lift Analysis

Evaporation Pond Wind Lift Analysis

OBJECTIVE: Determine the necessary anchorage to negate HDPE geomembrane movement due to the wind in the evaporation pond. Determine this for both short and long term conditions.

METHOD: Use design tables from Koerner and Wayne, *Effect of Wind Uplift on Liner Systems*, Geosynthetic Fabrics Report, July/August 1988. A wind speed of 70 mph will be used based on EDF-ER-323, Evaporation Pond Berm Overtopping Analysis, which used this value to calculate wave runup within the evaporation pond.

ASSUMPTIONS: Sand bags are asssumed to be 70 lbs each (minimum)

CALCULATIONS:

<u>Short Term:</u> Sand bags will need to be placed on top of the geomembrane liner after installation because the geomembrane is the upper most layer in the evaporation pond liner system.

The short term wind speed of 35 mph was used which is approximately half of 70mph which is the upper end of wind speed gusts measured.

Based on attached Figures 3 - 10, the average Cp (pressure coefficient) is -0.2

Use Table 2(b), and a Cp value of -0.2 to determine sand bag spacing,

25 mph wind - 1 sand bag per 219 ft² 50 mph wind - 1 sand bag per 54.8 ft²

Using linear interpolation of these values to determine the area per sand bag for a 35 mph wind, one sand bag should be placed for every 153 square feet.

Sand bags should be tied off every 5 linear feet along the rope. To determine the bag line spacing, divide 153 square feet by 5 feet.

Sand Bag Line Spacing = 153 sq. ft / 5 ft = 30.6 ft or approximately 30 feet

Long Term:

A long term wind speed of 45 mph was used which is approximately 65% of 70 mph which is the upper end of wind speed gusts measured.

Based on attached Figures 3 - 10, the average Cp (pressure coefficient) is -0.2

Use Table 2(b), and a Cp value of -0.2 to determine sand bag spacing,

25 mph wind - 1 sand bag per 219 ft2 50 mph wind - 1 sand bag per 54.8 ft2

Using linear interpolation of these values to determine the area per sand bag for a 45 mph wind, one sand bag should be placed for every 86.2 square feet.

Sand bags should tied off every 5 linear feet along the rope. To determine the bag line spacing, divide 86.2 square feet by 5 feet.

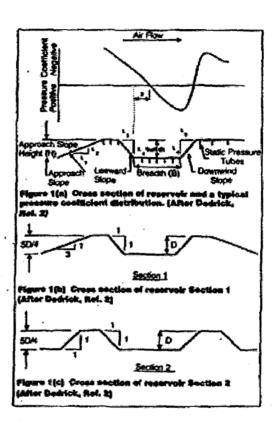
Sand Bag Line Spacing = 153 sq. ft / 5 ft = 17.2 ft or approximately 15 feet

For long term conditions, in addition to sand bagging it is suggested that the bottom of the pond be covered with a minimum of either soil or fluid in the bottom to counterweight additional long term uplift pressures due to wind.

Conclusion: For short term conditions, sand bags should be placed at a 30 feet spacing. For long term conditions, sand bags should be placed every 15 feet and either fluid or soil should be placed in the bottom.

Effect of Wind Uplift on Liner Systems

The installation of geomembrane liner systems for reservoirs, tandfills and other related impoundments is greatly affected by wind. Natural winds near the earth's surface are influenced by friction at the ground surface and surbulence within the flowing air mass. Uplift forces develop as a result of wind flow separation, which occurs when the air mass decelerants or when boundary shapes are irregular. Domistream from the point of air flow separation, a disturbed flow, or wake of surbulent eddies is formed and flow reverses. When such uplift forces are not adequately sensited by (a) dead weight (sandbags, tires, etc.), (b) suction devices (installation of suction cowls as used in the agricultural industry) or (c) perquanent bonding (e.g., placement of an asphalt emulsion) methods, various stresses on the geomembrane shoets and seams are exerted, in the limit they will lift the sheet, and/or cause tearing to occur.


Discussion

This brief paper uses information obtained by Dedrick des to develop a design methodology that can be used in determining the magnitude and distribution of fractive (uplift) focuses on geomembrane systems. In particular the paper focuses on two reservoir sections with the following geometric characteristics, (see Figures 1(s-c)).

Geometric Detail	Section 1 [fig. 1(b)]	Section 2 [fig. 1(c)]
Approach Slope	13	1:1
Approach-Slope Height	5D4	5Dr4
Loeward Slope	1:1	1:3
Breadth-to-Depth Ratio	5	5

Dedrick "" highlights the required fluid mechanics principles relative to modeling of water-harvesting catchments and reservoirs for agricultural purposes. This same information can be applied to solid waste land disposal cells and surface impoundments during construction and prior to filling that have size geometry similar to the previously mentioned sections.

Figure 1(a) illustrates the geometric configuration of the sections studied and also indicates pressure measurement locations for the various sections examined. In Dedrick's study each model section was subjected to test wind velocity ranges of 92 to 96, 126 to 130, and 157 to 160 mph. Additionally, airflow was varied from 0' (which was parallel

Through proper dimensional analysis, Dedrick ".b formed the following dimensionless equation.

$$\frac{\Delta P}{1/2\rho V^2}$$
 (Eq. 1)

Where

C, = pressure coefficient

ΔP = pressure difference (lbl/ft)
ρ = fluid density (sing/ft' = lbf s²/ft')

(a) Tractive (upliff) Terces, in W/It', produced at various wind speeds as

d speed -	25 mph	60 mph	75 mph	100 mph	125 mph
Ap Values					
-0.2 -0.4	0.32	1.26	2.86	5.11	8
-0.4	0.64	2.56 3.83	\$75	10.2	16
-0.6	0.96 1.26	4.43	8.63	16.3	24
-0.8 -1	1.29	5.11 6.39	11.5 14.4	20.5 25.6	32 40

Table 2(b) Sandhay specing requirements in 2°, macessary to pempensate for the smill farces found in Table 2(a).

Wind Speed →	25 mph	50 mph	75 mph	100 mph	125 mph
Cp Values		The second secon			
-0.2 -0.4	219 109.5	54.8 27.4 18.3	24.3 12.2	13.7 6.9	4.4
-0.2 -0.4 -0.6 -0.8	73 54.8	18.3 13.7	&1 6.1	4.6 3.4	2.9 2.2
~i	43.8	11	4.9	2.7	1.0

value of aptift pressure can then be resisted by whatever mechanism is available, e.g., tires or sandbags.

To illustrate use of the preceeding information, we have developed example design tables and an illustrative problem. Table 2(a) has been developed on the basis that air density is conservatively taken at sea level ($\rho = 0.002377$ stug/ft) and wind speeds are taken as 25, 50, 75, 100, and 125 mph. Calculated sandbag spacings were based on the use of 70 lb sandbags and are presented in Table 2(b).

use of 70 h sandbags and are presented in Table 2(b).

Note that these sandbag spacing are not required over the entire site but only where against values of C, exist. Thus for the acction illustrated in Figure 3, with a design wind velocity of 75 mph, uplift pressures will develop as shown in Figure 11(a). To resist such forces, sandbags weighing 70 ib each would be required as shown in Figure 11(b).

Conclusion

The problem of wind forces lifting up liners and occasionally tearing them and/or their seams, is addressed in this short paper. While its major focus is toward geomembranes, other geosynthetics have experienced wind-related construction problems. For example, geotextiles used to returd reflective cracking in highway rehabilitation and geotextiles used on slopes for example ontool systems have been known to be problematic in high wind locations. The techniques presented should apply to these situations as well as with geomembranes.

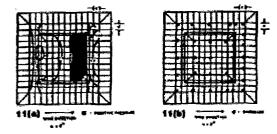


Figure 11(a) induced uplift pressures, in sel, produced by 73 mph winds, (b) Sandbag spacing required for geomembrane system filtestrated in (a). Note that dimensions are exaggerated for illustrative purposes.

References

- Dedrick, A. R., Air Pressures Over Surfaces Exposed to Wind. I. Water Harvesting Catchments, TRANS-ACTIONS of the ASAE, Vol. 17, No. 5, 1974.
- Dedrick, A. R., Air Pressures Over Surfaces Expands to Wind.-II. Reservoirs. TRANSACTIONS of the ASAE, Vol. 18, No. 3, 1975.
- Richardson, G. N. and Koerner, R. M., Geosynthetic Design Guidance for Hazardous Waste Landfilli Cells and Surface Impoundments, United States Environmental Protection Agency, Contract No. 68-03-3338.
- Fox, R. W. and McDonald, A. T., Introduction to Fluid Mechanics, 3rd ed., John Wiley and Sons, New York, 1985.

Acknowledgements .

Work going into this paper was apomored by the Geosynthetic Research Institute member organizations for which we extend our sincere appreciation. Currently these are as follows:

Gundle Lining Systems, Inc.
Soil & Maserials Engineers Inc.
U.S. Environmental Protection Agency
Polyfelt, Inc.
Waste Management Inc.
Hoechst Celanese Cosp.
Browing-Ferris Industries
Monsanto Company
E. I. Du Pont de Nemours & Co. Inc.
Federal Highway Administration
Golder Associates, Inc.
Mirafi, Inc.
The Tensor Corporation
Fluid Systems Inc. Mational Seal Co.

Particular thanks are expressed to Robert E. Landreth of the U.S. EPA and Henry E. Hazo Ir. who brought the Dedrick references to our attention.

Mark H. Wayne is a graduate research assistant at the Geosynthetic Research institute, Drezel University, Philadelphia, Pa. Robert M. Koenner is the Bowman Professor of Civil Engineering and Director of the Geosynthetic Research Institute.

GEOTECHNICAL FABRICS REPORT

29

Appendix D Anchor Trench Pullout Resistance Calculation

ANCHOR TRENCH PULL OUT RESISTANCE CALCULATION

Objective: Determine Anchor Trench Pull Out Resistance

Input:

Minimum Liner interface friction angle (d):

29.3 °

pcf

pcf

ft

ft

(Nonwoven GCL/composite drainage net,

see attached shear strentgh information from EDF-ER-268)

Minimum Liner interface adhesion (a): (Nonwoven GCL/composite drainage net,

> 3 ft

> 3 ft

see attached shear strentgh information from EDF-ER-268)

Cover Soil Density (gcs): 120 Anchor Trench Soil Density (g): 110

Anchor Trench Width (LAT): 2 2

Anchor Trench Depth (d_{AT}):

Operations Layer Thickness (dcs): Runout Trench Length (L_{RO}):

Anchor Trench Backfill Friction Angle (f): 30

Anchor Trench Bottom Resistance

 $Pr_1 = (S_{n1} tand + a) L_{RO}$

Anchor Trench Runout Resistance

 $g_{cs} d_{cs}$ S_{n1} = 360 psf S_{n1} = **Pr**₁ = 606.068 lbs/ft $Pr_2 = (s_{n2} tand + a) L_{AT}$ $S_{n2} = (g_{cs} d_{cs}) + (g d_{AT})$ $s_{n2} = 580 \text{ psf}$ $Pr_2 = 650.96$ lbs/ft

Anchor Trench Sidewall Resistance

 $k_o = (1 - \sin f)$ $k_o =$

Shavg = ko * Savgv

 $S_{havg} = 235$ $S_{havg} = S_{n3}$

 $Pr_3 = (s_{n3} tand + a) d_{AT}$ $Pr_3 = 263.75$ lbs/ft Average normal stress through anchor trench

 $S_{avgv} = (S_{n1} + S_{n2})/2$ $s_{avgv} = 470 psf$

Total Anchor Trench Pullout Resistance

 $Tr = P_{r1} + P_{r2} + P_{r3}$

Tr = 1520.78 lbs/foot

Conclusion:

Anchor trench pullout capacity of 1521 lb/ft is greater than the 440 lb/ft that is required to maintain a slope stability safety factor for Case 1 presented in EDF-ER-268. This case is disussed in EDF-ER-268.

ICDF - Interface Strength Values for Veneer Stability Analysis (EDF-ER-268, Section 3)

	Strength calc. from regression analysis ^a	Site-Specif Results ^b	ic Test	
Lining System Interface	Friction Angle (deg)		Apparent Cohesion (psf)	Effective Friction Angle ^c (deg)
Ops Soil/Composite Drainage Net (CDN)	38.0	38.6	86	
CDN/Textured HDPE	24.0	17.8	220	37.5
Textured HDPE/GCL	26.0	27.6	279	47.0
GCL/CDN	19.0 ^d	29.3	0	29.3
Textured HDPE/CCL (Soil-Bentonite) ¹	25.0°	30.8	129	40.7

Notes:

- ^a See regression graphs in Appendix A, EDF-ER-268; cohesion = 0 psf in regression analysis
- ^b Testing by Precision Geosynthetics (6/01) on site-specific lining materials; normal stress 100, 250 and 500 psf
- ^c Calculated at normal stress of 500 psf with Cohesion = 0 psf
- ^d 19 deg calc from data, however 24 deg (based on MW tests) used in analysis; see p. 3.3 in EDF-ER-268
- e from CHRLF data (1998) see p. 3.3 in EDF-ER-268
- f Site-specifc test data on Soil-bentonite compacted to 87% modified; tests currently being rerun at 92%

Appendix E Water Erosion of Final Cover Surface

WATER EROSION OF SOIL COVER

OBJECTIVE: Determine the cover soil erosion due to surface sheet erosion.

METHOD: The Modified Universal Soil Loss Equation (MUSLE) was used to calculate the average annual soil erosion resulting from sheet flow across the top surface of the final cover. This is the method presented in NUREG/CR-4620 for use at uranium mining tailing impoundments with a 1000 year design life. This method estimates runoff based on rainfall intensity, soil type, length and slope of the surface, and a control factor which represents vegetative and mechanical factors. The equation is given below.

A = R*K*LS*VM

where:

A = the computed loss per unit area in tons per acre per year with the units selected for K and R properly selected R = the rainfall factor which is the number for rainfall erosion index units plus a factor for snowmelt, if applicable K = the soil erodibility factor, which is the soil loss rate per erosion index unit for a specified soil as measured on a unit plot that is designed as a 72.6 foot length of uniform 9% slope continuously maintained as clean tilled fallow LS = the topographic factor, which is the ratio of soil loss from the field slope length to that from a 72.6 foot length under other wise identical conditions.

VM = the dimensionless erosion control factor relating to vegetative and mechanical factors. This factor replaces the cover management factor (C) and the support factor (P) of the original USLE.

CALCULATIONS:

Ryegrass Flats and WRRTF Borrow Soil Areas (see attached particle size distribution)

Ryegrass Flats and WRRTF Borrow Soil Areas (see attached particle size distribution)

į	Percent		Percent
	silt and very		Sand
Sample #	fine sand	Sample #	(0.1 - 2.0 mm)
#1-O	94	#1-O	6
#1-O,#2	93	#1-0,#2	7
#1-P,#1	80	#1-P,#1	20
#1-P,#2	95	#1-P,#2	5 、
#1-Q,#1	94	#1-Q,#1	6
#1-Q,#2	96	#1-Q,#2	4
#3-O,#1	58	#3-O,#1	42
#3-O,#2	90	#3-O,#2	10
#3-P,Alt. #1	90	#3-P,Alt. #1	10
#3-P, Alt. 2	92	#3-P, Alt. 2	8
#3-Q,#1	92	#3-Q,#1	8
#3-Q,#2	80	#3-Q,#2	20
Maximum	96	Maximum	42
Average	87.83	Average	12.17

K = 0.7 (use attached nomograph to determine K)
R = 20 (use attached figure 5.3 to determine R)
LS =
$$\frac{650 + 450s + 65s^2}{10.000 + s^2}$$
 L m

where:

s = slope steepness in percent

m = exponent dependent upon slope steepness

L = slope length in feet

 s =
 7
 (see attached drawing)

 m =
 0.5
 (see attached Table 5.2)

 L =
 434
 ft
 (see attached drawing)

 LS =
 2.077623

VM = 0.18 (average of seeding values shown in table 5.3)

A = 5.235609 tons per acre per year

Determine the thickness of cover erosion per year.

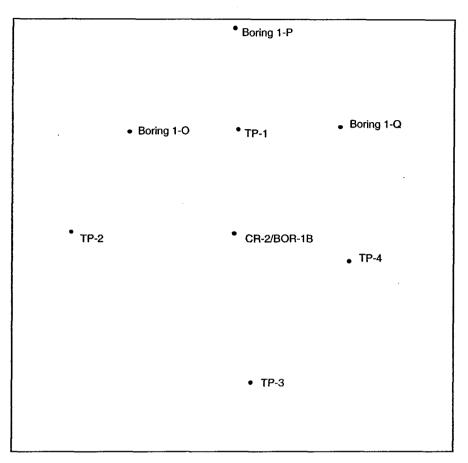
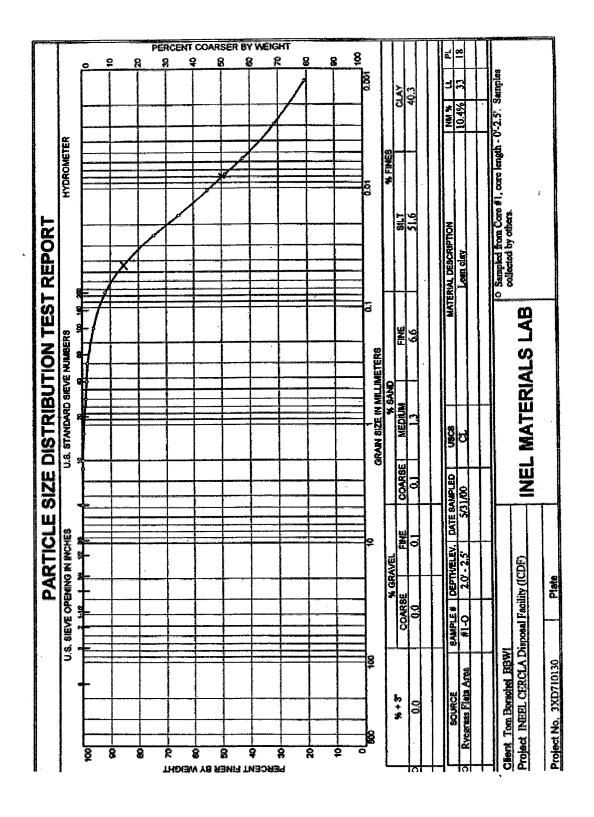
Assume the density of the cover soil is

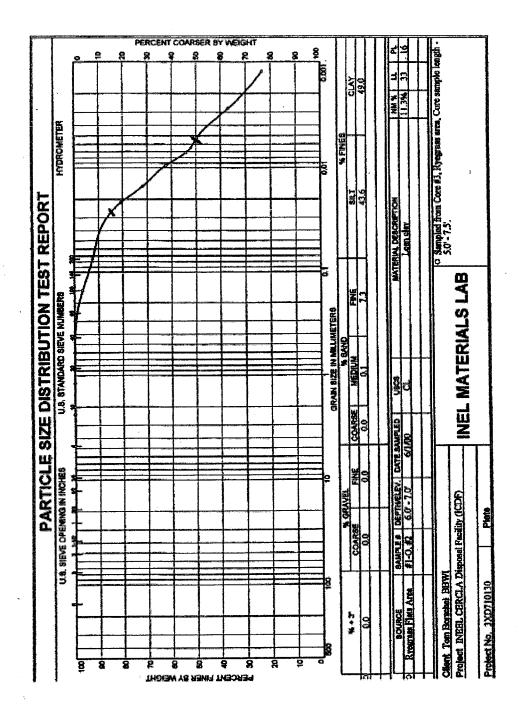
110 pcf

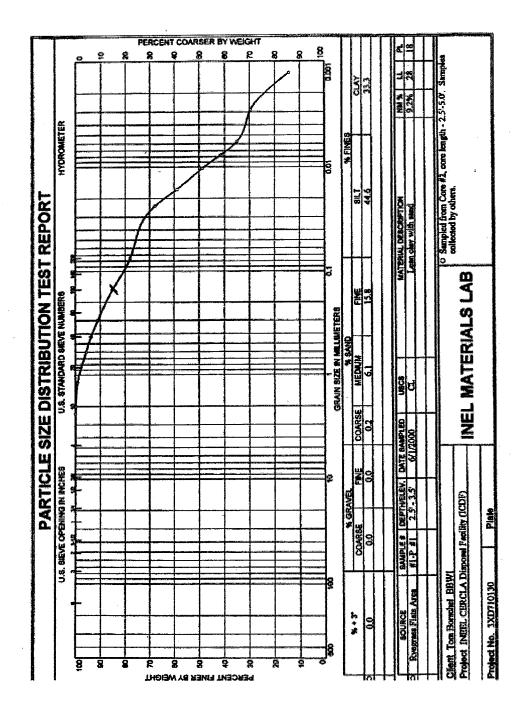
Erosion = 0.002185 ft per year

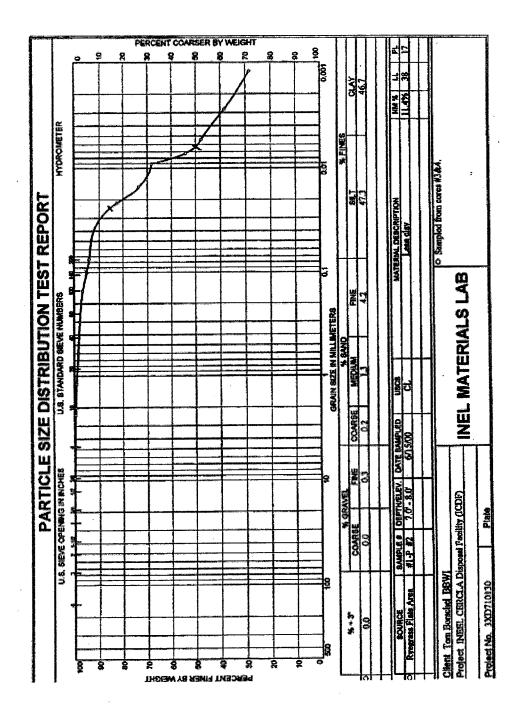
Design Life Erosion = 2.185328 ft per 1000 years 26.22 in per 1000 years 66.61 cm per 1000 years

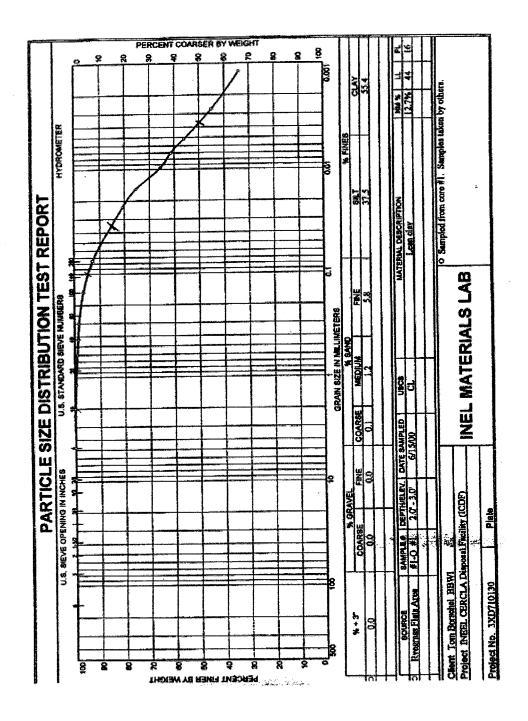
CONCLUSION: Overbuild the cover thickness by at least 73 cm to compensate for the erosion estimated over the 1000 year landfill service life.

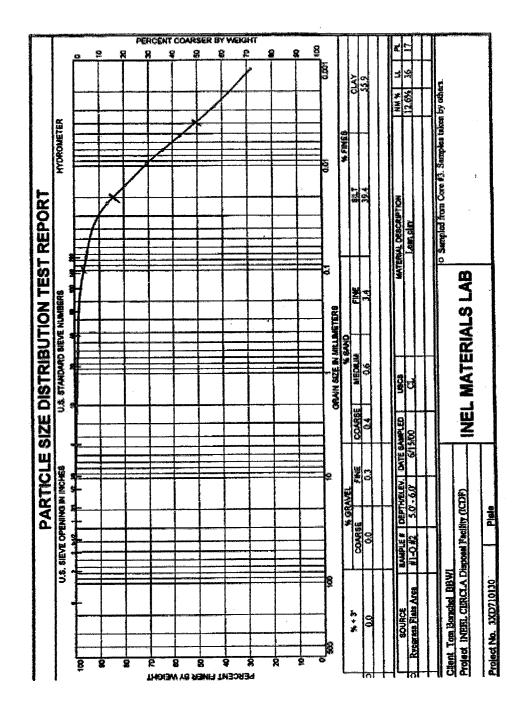



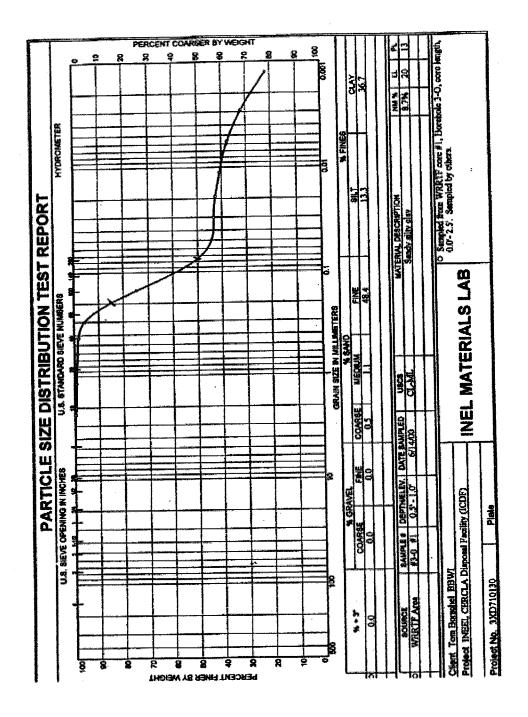

Figure 4-4. Rye Grass Flats boring and test pit locations.

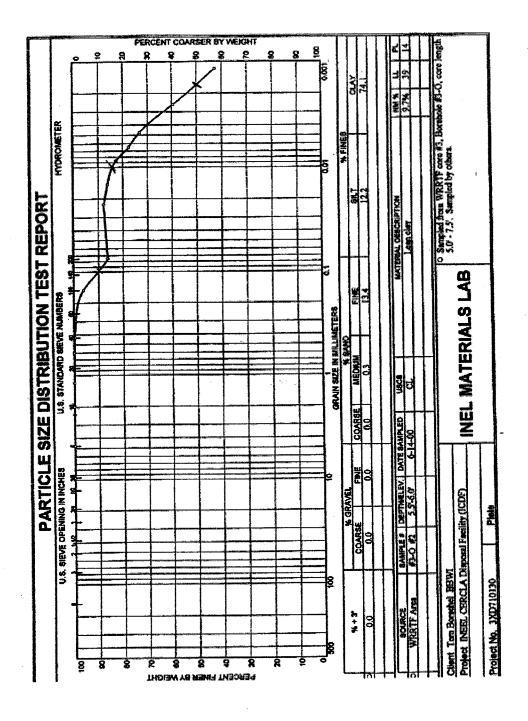

Table 4-1. (continued).

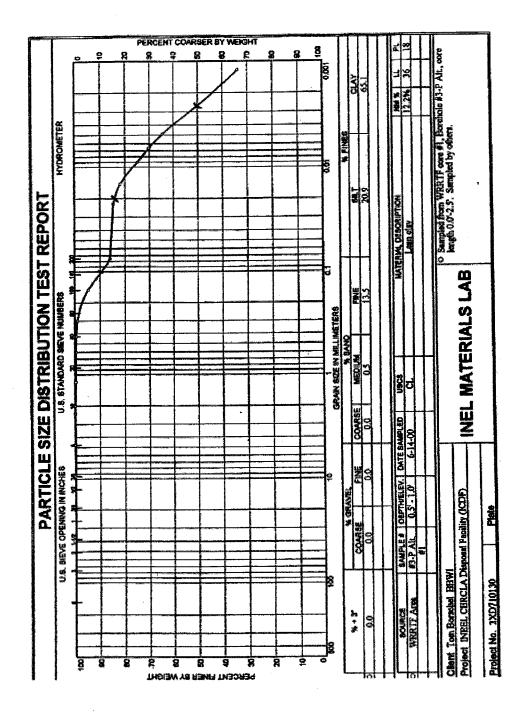

			% Gravel	44	THE SE	70		% Frace				Ö.					
Buring/ Sample	k Depth	& in	Course	T.	Costrice	Z.	Fine	Silt	â	Muterial Description	Max Dry Density	Moisi	USCS	ž	킈	포	Hydraulic Conductivity
1									RT.	Ryre Grass Flats Sile							
9	1 2:-2:-	0.0	0.0	20	0.1	2	9.9	\$1.6	.	Lean clay	106 ومرز	*81	ರ	97	2	20	@ 1'-6"-4' 5.23E-08 cur/sec Compaction 98.2% Moisture content 16.39.
1-0#2	6-7	0.0	0.0	0.0	, 0 ,0	- -	7.3	43.6	6 . 6.	Lean chay	jng bag	30%	ರ	**. =	m es	<u>*</u>	©68' 3,026.07 cnVsec Compaction 98.8% Moisture contest 20.8%
*	3.6.	9	0.0	0'0	0.2	4	15.8	44.6	e e	Leun clay with sund	111 per	16%	ಕ	9.2	50 20	20	Mos restod
74 d-1	2 7'-8'	0.0	0.0	0.3	0.2	2	4.2	47.3	46.7	Lean clay	167 pef	Ī	ರ	7	*	Ľ	Not rested
₹	- - -	00	0.0	0.0	-	7	op VS	37.5	55.4	Lean clay	10% per	19% 1	ಕ .	12.7	‡	ž	© 1'-3' 1.40 E-07 envices Compaction 98.6% Moisture emitem 18.1%
0	9-3 2	0.00	9	0.3	7	9:0	च 6	39.4	\$5.5 \$2.5	Lean clay	i in per	20%	ರೆ	12.6	ž	2	69 4'-6'-6'-6'- 2,55 E- Ob um/sec Compaction 97.5% Maisture conten 14.7%

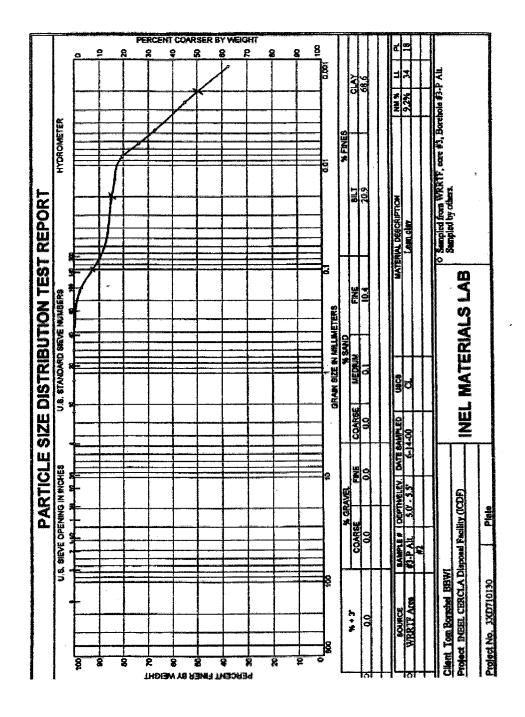

Source 4.1. Donow source georgeminess rest results.	T DOM	1 × 30	S. Crovet		% Sand	spures,		S Fines				ō					
Boring/ Sample	Dept	&~	Coarse	PAE.	Š	E	ji.	ž	ő	Materiul Description	Max Dry Density	Noist *	CS	圣米	∃	۲	Hydraulie Conductivity
									≯	WRRTF Sile							
S =	,19	0.0	0.0	0.0	\$ O	3	48.4	E.C.I	36.7	Sandy silty clay	110 pct	%81	ច់≆ី	1.7	R	<u> </u>	@6"-2"-6" 8.97E-06 undec Compaction 93.7% Moisure content 17.6%
9 2	\$ 50 5	00	0.0	0.0	00	e o	13.4	전	7	Leun tiay	106 pcf	5 5	ರ	**	帛	2	695'-7' 4.36E-08 crayoc Composition 100.4% Maisture content 19.9%
14 C		00	0.0	9.0	0.0	0.5	2	502	65.1	Lean day	107 puf	6	ರ	12.2	吳	**	@6".3".6" 2.03E-U7 chatte Compathin 92.0% - Moissure control 19.8%
3-1-1-14 #2	у. 2. ?	0.0	99	0.0	97	G.	<u>.</u>	20.9	68.6	Leun chay	112 pcf	5.81	ರ	4.2	*	±	@5'-7' 4, MB-07 unker Campacidun 95.3% Maisture content 17.0%
3-Q#	ig in	G.O	â.ô	0.0	00	0.2	2	8	70.7	Lean clay	14 pcf	8	台	=	H	11	Not tened
70 E	9 60	0.0	0.0	0.0	0.0	3	28.4	0.8	52,4	Lean clay			ರ	20	238	Z	Neit festigal

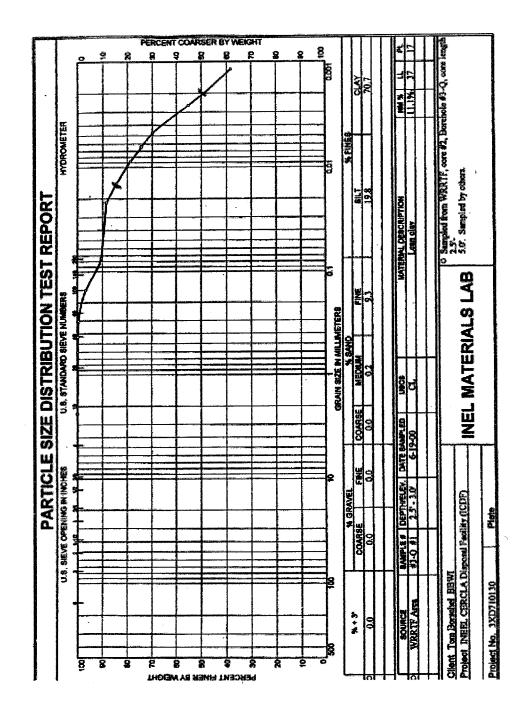


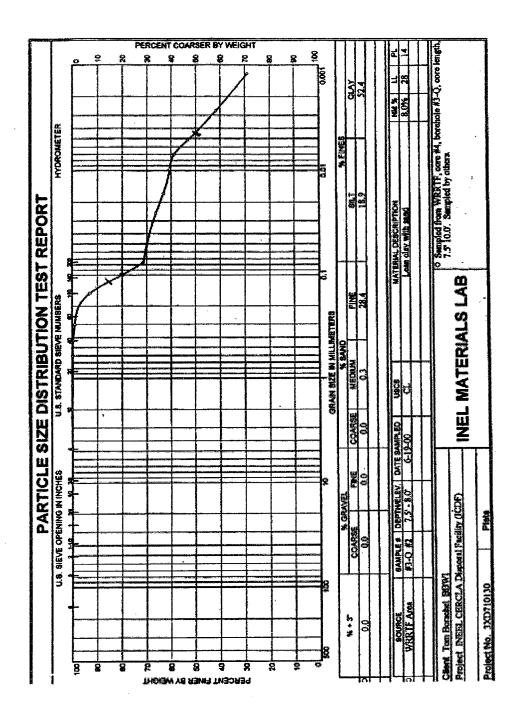












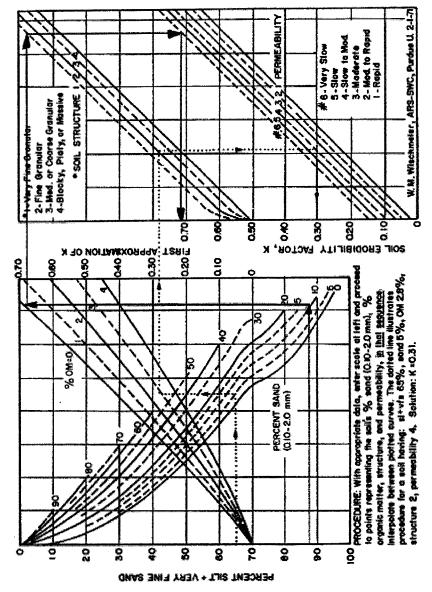
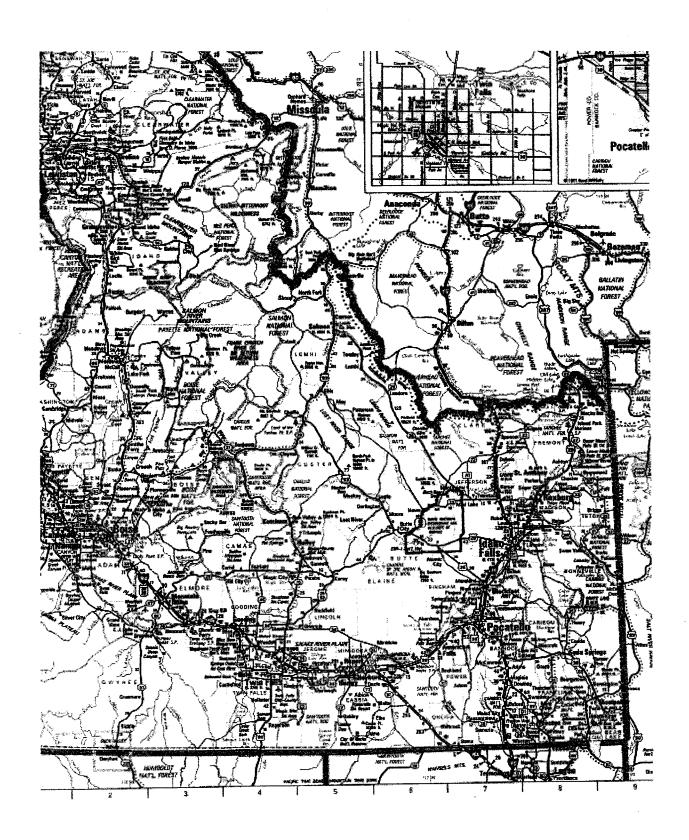
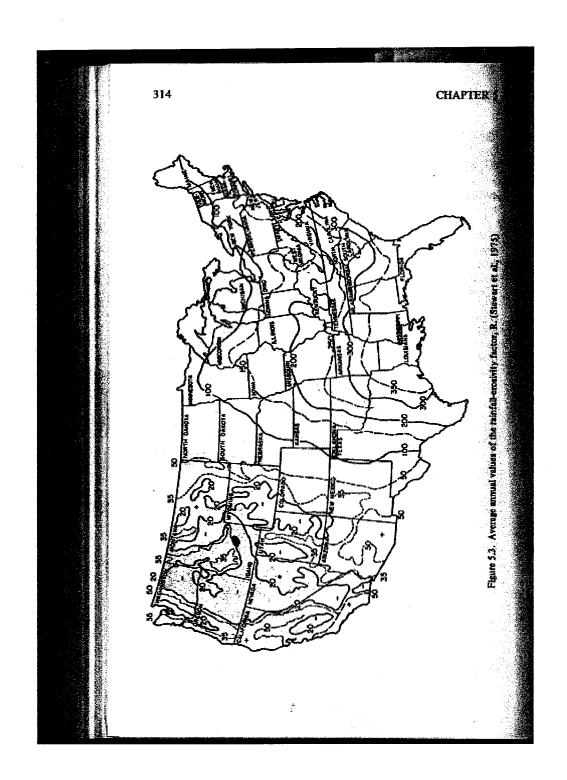
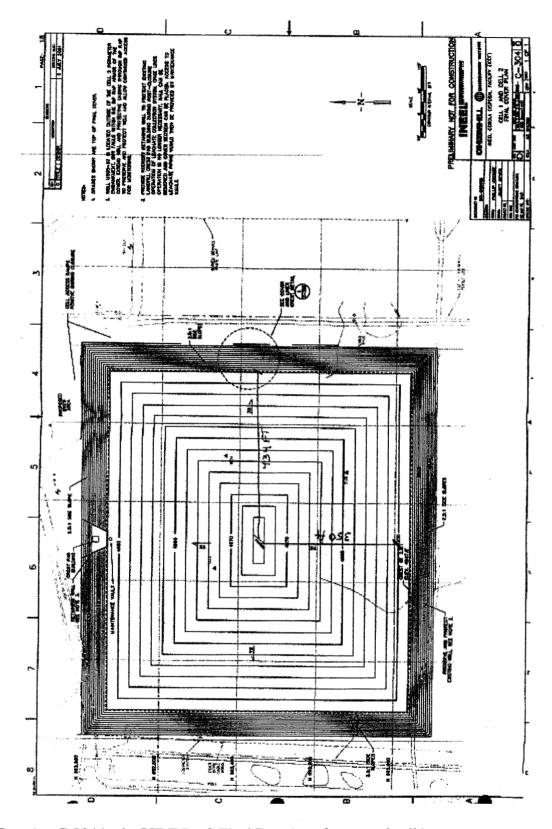





Fig. 5.1. Nousograph for determining soil erolibility factor K. Source: after Wischmeier et al., 1971.

(See Drawing C-304 in the ICDF Draft Final Drawings for more detail.)

5.1.2.3 The Topographic Factor (LS)

Although the effects of both length and steepness of slope have been investigated separately in different research efforts, it is more convenient for analytical purposes to combine the two into one topographic factor, LS. Wischmeier and Smith (1978) developed plots correlating the topographic factor for slopes up to 500 meters in length at slope inclinations from 0.5% up to 50%. Note that flat, short slopes will have less erosion than long, steep slopes and it is to the benefit of the design engineer to optimize slope length and gradients to fit the topography.

The equation to determine the LS factor is as follows:

$$LS = \frac{650 + 450s + 65s^2}{10.000 + s^2} \frac{L}{72.6}$$
 (5.2)

where LS = topographic factor

L = slope length in feet s = slope steepness in percent

m = exponent dependent upon slope steepness

The slope dependent exponent m is presented in Table 5.2.

Table 5.2 Slope Dependent Exponent

Slope (percent)	Ą
s < 1.0	0.2
1.0 < s < 3.0 3.0 < s < 5.0	0.3 0.4
5.0 < s ₹ 10.0	0.5
s > 10.0	0.6

5.1.2.4 The VM Factor

The VM factor is the erosion control factor applied in place of the cover and erosion control factors found in the USLE. The erosion control factor accounts for measures implemented at the construction site to include vegetation, mulching, chemical treatments and sprayed emulsions to impede or reduce erosion due to the overland flow of water. Values of the VM factor relative to site-specific conditions are presented in Table 5.3.

The YM factor is perhaps the most sensitive factor to effect the computed erosion loss for a given site. As shown by the values presented on Table 5.3, the development of a permanent vegetative cover can have a significant impact in reducing the computed erosion loss. However, the effectiveness of a vegetative cover over long-term periods should be questioned unless other protective schemes, such as armoring of the cover with the proper size material, are also included in the design.

5.1.2.5 Example Problem

An example problem in how to use the MUSLE is provided below.

Assumptions:

Site location:

Western Colorado

Site description: Uncovered tailings pond

Pond size:

160 acres

Slope:

34

Length:

2500 ft

Material:

42% sand greater than 0.10 mm;

58% fine sand and silt less than 0.10 mm;

5% clay less than 0.002 mm;

0% organics;

(53% silt plus fine sand less than 0.1 mm);

Consistency - fine granular; Permeability - slow to moderate.

The following factors have been determined for use in Equation 5.1.

R = 20 from Table 5.1

K = 0.50 from Figure 5.1

LS = 0.747 from Equation 5.2 and Table 5.2

VM = 1.0 (average from Table 5.3 based on an undisturbed surface)

Using Equation 5.1, the annual soil loss (A) from the tailings pond due to sheet erosion caused by flowing water is computed to be 7.47 tons/acre/ year, or 1195 tons/year from the facility. Therefore, the cover is estimated to erode at a rate of 0.003 ft per year, or 0.3 ft/century.

5.2 SUMMARY AND FUTURE STUDIES

The main application of the soil loss equation approach in the evaluation of cover integrity is to determine whether it is possible for sheet erosion to penetrate the tailings cover, thereby exposing bare tailings and constituting a failure of the cover. The followup study will concentrate

Table 5.3. Typical VM Factor Values Reported in the Literature.

¢	endition	YM FACTOR
1. Bere soil condi	tions	
freshly disked	to 6-8 Inches	1.00
after one rain		9.89
leose to 12 inc	hes smooth	9.90
loose to 12 inc		0.80
• •	ozer scraped up and down	1.30
Same except r		1.20 1.20
	ozer scraped acrost slope	0.90
	out raked across tracked all directions	0.96
seed and fertil		0,64
Same after 51		0.54
seed, fertilize	r, and 12 months chemical	0.38
not tilled alga	e crusted	0.01
tilled algae cr	#\$ted	0.02
compacted fill		1.24 - 1.7
undisturbed exc	ëpt scraped	0.66 - 1.3
scarified only		0.76 - 1.3
sawiust 2 inche	s deep, disked in	0.61
. Asphalt emulsio	n on bare soil	
1250 gallons/ac	re	0.02
1210 gallons/ac		0.61 - 0.0
605 gallons/acr		0.14 - 0.5
302 gallons/acr		9.29 - 9.6
151 gallons/acc	*	0.65 - 0.7
3. Dust binder		
605 gallons/acr 1210 gallons/ac		1.05 0.29 ~ 0.7
4. Other chemicals		V-23 - U.
The same of the sa	: Glass Roving with 60-150 gallons asphalt amulsion/acre	0.01 - 0.0
Aquatain	diese chailid with antiton derithin exhibiting chaistachtacht.	0.68
Aerospeay 70, 1	O percent cover	0.94
Curasol AE	the first state of the state of	0.30 - 0.4
Petroset 58		0.40 - 0.6
PVA		0.71 - 0.9
Terra-Tack		0.56
	ry, 1000 lb/acre freshb	0.05
	ry. 1400 lo/acre freshb	0.01 - 0.0
:	ry, 3500 lb/acre freshb	0.10
5. <u>Seedlags</u>		
temporary, D to		0.40
temporary, afte		0.05
permanent, 0 to		0.40
permanent, 2 to		0.05
permanent, afti	स ६८ छन् गरश ऽ	0.01
6. Brush	are also alreaded and	
. EXCRESSOR BIAM	et with plastic net	0.04 - D.T

^{*}Note the variation in values of YM factors reported by different researchers for the same measures. References containing details of research which produced these YM values are included in NCHRP Project 16-3 report, "Erosion Control During Highway Construction, Vol. III. Bibliography of Water and Wind Erosion Control References," Transportation Research Board, 2101 Constitution Avenue, Mashington, DC 20418.

bThis material is commonly referred to as hydromulch.